Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mil Med ; 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20245264

ABSTRACT

Long-coronavirus disease (COVID) is an ill-defined set of symptoms persisting in patients following infection with COVID-19 that range from any combination of persistent breathing difficulties to anosmia, impaired attention, memory, fatigue, or pain. Recently, noninvasive transcutaneous electrical brain stimulation techniques have been showing early signs of success in addressing some of these complaints. We postulate that the use of a stimulation technique with transcranial magnetic stimulation may also similarly be effective. A 36-year-old male suffering from symptoms of dyspnea, anosmia, and "brain fog" for 2 years following coronavirus infection was treated with 10 sessions of Electro-Magnetic Brain Pulse (EMBP®), a personalized transcranial magnetic stimulation protocol guided by the patient's electroencephalograph (EEG). At the conclusion of the treatment, the patient had improvements in mood, sense of smell, and brain fogging. Dyspnea also decreased with a gain of 11% forced expiratory volume 1/forced vital capacity. A high-sensitivity athletic training cognitive test showed an overall 27% increase in aggregate score. A significant portion of this was attributed to changes in visual clarity and decision-making speed. Post-treatment EEG showed a shift from predominantly delta waves to more synchronized alpha wave patterns during the resting state. Brain stimulation techniques appear to be showing early signs of success with long-COVID symptoms. This is the first case describing the use of a magnetic stimulation technique with quantitative test results and recorded EEG changes. Given the early success in this patient with cognition, dyspnea, and anosmia, this noninvasive treatment modality warrants further research.

2.
Adv Sci (Weinh) ; 10(17): e2207249, 2023 06.
Article in English | MEDLINE | ID: covidwho-2299008

ABSTRACT

Highly pathogenic coronavirus (CoV) infection induces a defective innate antiviral immune response coupled with the dysregulated release of proinflammatory cytokines and finally results in acute respiratory distress syndrome (ARDS). A timely and appropriate triggering of innate antiviral response is crucial to inhibit viral replication and prevent ARDS. However, current medical countermeasures can rarely meet this urgent demand. Here, an antiviral nanobiologic named CoVR-MV is developed, which is polymerized of CoVs receptors based on a biomimetic membrane vesicle system. The designed CoVR-MV interferes with the viral infection by absorbing the viruses with maximized viral spike target interface, and mediates the clearance of the virus through its inherent interaction with macrophages. Furthermore, CoVR-MV coupled with the virus promotes a swift production and signaling of endogenous type I interferon via deregulating 7-dehydrocholesterol reductase (DHCR7) inhibition of interferon regulatory factor 3 (IRF3) activation in macrophages. These sequential processes re-modulate the innate immune responses to the virus, trigger spontaneous innate antiviral defenses, and rescue infected Syrian hamsters from ARDS caused by SARS-CoV-2 and all tested variants.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Immunity, Innate , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
J Am Acad Dermatol ; 2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2288918

ABSTRACT

BACKGROUND: Alopecia areata (AA) is a CD8+ T cell mediated autoimmune disease characterized by non-scarring hair loss. Ivarmacitinib, a selective oral Janus kinase 1 (JAK1) inhibitor, may interrupt certain cytokine signaling implicated in the pathogenesis of AA. OBJECTIVE: To evaluate the efficacy and safety of ivarmacitinib in adult AA patients who have ≥25% scalp hair loss. METHODS: Eligible patients were randomized 1:1:1:1 to receive ivarmacitinib 2 mg, 4 mg, or 8 mg QD or placebo for 24 weeks. The primary endpoint was percentage change from baseline in Severity of Alopecia Tool (SALT) score at week 24. RESULTS: A total of 94 patients were randomized. At week 24, the least squares mean (LSM) difference in percentage change from baseline in SALT score for ivarmacitinib 2 mg,4 mg, 8 mg, and placebo groups were -30.51% (90% confidence interval [CI]: -45.25, -15.76), -56.11% (90% CI: -70.28, -41.95), -51.01% (90% CI: -65.20, -36.82) and -19.87% (90% CI: -33.99, -5.75), respectively. Two SAEs, follicular lymphoma, and COVID-19 pneumonia were reported. LIMITATIONS: Small sample size limits the generalizability of the results. CONCLUSION: Treatment with ivarmacitinib 4 mg and 8 mg doses in moderate and severe AA patients for 24 weeks was efficacious and generally tolerated.

4.
Bioengineering (Basel) ; 10(2)2023 Jan 22.
Article in English | MEDLINE | ID: covidwho-2288542

ABSTRACT

Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.

5.
Clin Cosmet Investig Dermatol ; 15: 1485-1487, 2022.
Article in English | MEDLINE | ID: covidwho-2231095

ABSTRACT

A case of new onset of severe plaque psoriasis following COVID-19 vaccination was reported. A 63-year-old woman presented with multiple plaques for 2 months after the second dose of COVID-19 vaccination. Dermatological examination revealed diffuse erythematous papules and plaques on trunk and limbs. Her lesions responded well to the treatment of secukinumab 150 mg per week. In this case, we presented the potential association between COVID-19 vaccination and the onset of psoriasis. It is essential to recognize the possible adverse events as vaccination against COVID-19 continues worldwide.

6.
Microbiol Spectr ; 10(3): e0195621, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1846337

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease responsible for many infections worldwide. Differences in respiratory microbiota may correlate with disease severity. Samples were collected from 20 severe and 51 mild COVID-19 patients. High-throughput sequencing of the 16S rRNA gene was used to analyze the bacterial community composition of the upper and lower respiratory tracts. The indices of diversity were analyzed. When one genus accounted for >50% of reads from a sample, it was defined as a super dominant pathobiontic bacterial genus (SDPG). In the upper respiratory tract, uniformity indices were significantly higher in the mild group than in the severe group (P < 0.001). In the lower respiratory tract, uniformity indices, richness indices, and the abundance-based coverage estimator were significantly higher in the mild group than in the severe group (P < 0.001). In patients with severe COVID-19, SDPGs were detected in 40.7% of upper and 63.2% of lower respiratory tract samples. In patients with mild COVID-19, only 10.8% of upper and 8.5% of lower respiratory tract samples yielded SDPGs. SDPGs were present in both upper and lower tracts in seven patients (35.0%), among which six (30.0%) patients possessed the same SDPG in the upper and lower tracts. However, no patients with mild infections had an SDPG in both tracts. Staphylococcus, Corynebacterium, and Acinetobacter were the main SDPGs. The number of SDPGs identified differed significantly between patients with mild and severe COVID-19 (P < 0.001). SDPGs in nasopharyngeal microbiota cause secondary bacterial infection in COVID-19 patients and aggravate pneumonia. IMPORTANCE The nasopharyngeal microbiota is composed of a variety of not only the true commensal bacterial species but also the two-face pathobionts, which are one a harmless commensal bacterial species and the other a highly invasive and deadly pathogen. In a previous study, we found that the diversity of nasopharyngeal microbiota was lost in severe influenza patients. We named the genus that accounted for over 50% of microbiota abundance as super dominant pathobiontic genus, which could invade to cause severe pneumonia, leading to high fatality. Similar phenomena were found here for SARS-CoV-2 infection. The diversity of nasopharyngeal microbiota was lost in severe COVID-19 infection patients. SDPGs in nasopharyngeal microbiota were frequently detected in severe COVID-19 patients. Therefore, the SDPGs in nasopharynx microbiota might invade into low respiratory and be responsible for secondary bacterial pneumonia in patients with SARS-CoV-2 infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Microbiota , Bacteria/genetics , Bacterial Infections/epidemiology , Coinfection/microbiology , Humans , Microbiota/genetics , Nasopharynx , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
7.
Gut ; 71(2): 238-253, 2022 02.
Article in English | MEDLINE | ID: covidwho-1622066

ABSTRACT

OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.


Subject(s)
Family Health , Helicobacter Infections/prevention & control , Helicobacter pylori , Infection Control/organization & administration , Adolescent , Adult , Aged , Child , Child, Preschool , China , Consensus , Delphi Technique , Helicobacter Infections/diagnosis , Helicobacter Infections/transmission , Humans , Infant , Middle Aged , Young Adult
8.
Microbiol Spectr ; 9(3): e0126721, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1522928

ABSTRACT

The objective of this study was to construct a novel strategy for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants using multiplex PCR-mass spectrometry minisequencing technique (mPCR-MS minisequencing). Using the nucleic acid sequence of a SARS-CoV-2 nonvariant and a synthetic SARS-CoV-2 variant-carrying plasmid, a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method based on the single-base mass probe extension of multiplex PCR amplification products was established to detect 9 mutation types in 7 mutated sites (HV6970del, N501Y, K417N, P681H, D614G, E484K, L452R, E484Q, and P681R) in the receptor-binding domain of the spike protein of SARS-CoV-2 variants. Twenty-one respiratory tract pathogens (9 bacteria and 12 respiratory viruses) and nucleic acid samples from non-COVID-19 patients were selected for specific validation. Twenty samples from COVID-19 patients were used to verify the accuracy of this method. The 9 mutation types could be detected simultaneously by triple PCR amplification coupled with MALDI-TOF MS. SARS-CoV-2 and six variants, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.429 (Epsilon), B.1.526 (Iota), P.1 (Gamma) and B.1.617.2 (Delta), could be identified. The detection limit for all 9 sites was 1.5 × 103 copies. The specificity of this method was 100%, and the accuracy of real-time PCR cycle threshold (CT) values less than 27 among positive samples was 100%. This method is open and extensible, and can be used in a high-throughput manner, easily allowing the addition of new mutation sites as needed to identify and track new SARS-CoV-2 variants as they emerge. mPCR-MS minisequencing provides a new detection option with practical application value for SARS-CoV-2 and its variant infection. IMPORTANCE The emergence of SARS-CoV-2 variants is the key factor in the second wave of the COVID-19 pandemic. An all-in-one SARS-CoV-2 variant identification method based on a multiplex PCR-mass spectrometry minisequencing system was developed in this study. Six SARS-CoV-2 variants (Alpha, Beta, Epsilon, Iota, Gamma, and Delta) can be identified simultaneously. This method can not only achieve the multisite simultaneous detection that cannot be realized by PCR coupled with first-generation sequencing technology and quantitative PCR (qPCR) technology but also avoid the shortcomings of time-consuming, high-cost, and high technical requirements of whole-genome sequencing technology. As a simple screening assay for monitoring the emergence and spread of SARS-CoV-2 and variants, mPCR-MS minisequencing is expected to play an important role in the detection and monitoring of SARS-CoV-2 infection as a supplementary technology.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Mass Spectrometry/methods , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Base Sequence , Humans , Mutation , Polymorphism, Single Nucleotide , Protein Binding , Real-Time Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Whole Genome Sequencing
9.
Clin Cosmet Investig Dermatol ; 14: 1119-1124, 2021.
Article in English | MEDLINE | ID: covidwho-1394656

ABSTRACT

PURPOSE: During the COVID-19 pandemic, teledermatology service was increased rapidly. The purpose of our study was to analyze the characteristics of patients and common skin diseases via teledermatology during the COVID-19 pandemic in mainland China. PATIENTS AND METHODS: During weekends between January 21 and April 4, 2020, the data of patients who used teledermatology service via a mobile application were collected, including gender, age, and diagnosis. RESULTS: A total of 698 patients (315 men and 383 women), with a mean age of 26 years, used this service. The top ten common diseases in order of proportion were eczema (22%), acne (9%), atopic dermatitis (9%), urticaria (5%), contact dermatitis (5%), herpes zoster (3%), warts (3%), folliculitis (3%), prurigo (3%), and androgenetic alopecia (2%). When classified according to age groups, atopic dermatitis was the most common condition for patients in the first decade, acne was more prevalent in the second and third decades, and eczema was the most prevalent condition for all other age groups. CONCLUSION: The ten common diseases accounted for the majority of the evaluated cases and varied by age group, allowing individualizing teledermatology services.

10.
Int J Dermatol Venereol ; 2020 Mar 13.
Article in English | MEDLINE | ID: covidwho-1292185

ABSTRACT

The 2019 novel coronavirus infection has brought a great challenge in prevention and control of the national epidemic of coronavirus disease 2019 (COVID-19) in China. During the fight against the epidemic of COVID-19, properly carrying out pre-examination and triage for patients with skin lesions and fever has been a practical problem encountered in hospitals for skin diseases as well as clinics of dermatology in general hospitals. Considering that certain skin diseases may have symptom of fever, and some of the carriers of 2019 novel coronavirus and patients with COVID-19 at their early stage may do not present any symptoms of COVID-19, to properly deal with the visitors to clinics of dermatology, the Chinese Society of Dermatology organized experts to formulate the principles and procedures for pre-examination and triage of visitors to clinics of dermatology during the epidemic of COVID-19.

11.
Disease Surveillance ; 36(1):23-28, 2021.
Article in Chinese | GIM | ID: covidwho-1190524

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swept the world in 2020, resulting in unprecedented pandemic of coronavirus disease 2019 (COVID-19). The number of infected persons and deaths increase every day at a frightening speed, threatening the health and life of people in the world and causing heavy burden to the global public health system. So far, nucleic acid detection is the main diagnostic method and gold standard for COVID-19. Meanwhile, other techniques and methods are also in developing for the diagnosis of SARS-CoV-2 infection. Proteomics technique is one of them. Proteomics technique has been widely used in the research of disease-related mechanism, development of diagnostic methods and pathogen identification. Up to now, there are mainly two applications of proteomics in the diagnosis of SARS-CoV-2 infection. First, proteomics based on virus particles has great potential in early diagnosis. Second, proteomics based on body fluids can be used not only for early diagnosis, but also for good monitoring the progress of infection, predicting the trend of disease, and evaluating the prognoses. In this paper, the research and application of proteomics technique in the diagnosis of SARS-CoV-2 infection in the world are summarized and prospected.

12.
Emerg Microbes Infect ; 10(1): 612-618, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1127286

ABSTRACT

Phage therapy is recognized as a promising alternative to antibiotics in treating pulmonary bacterial infections, however, its use has not been reported for treating secondary bacterial infections during virus pandemics such as coronavirus disease 2019 (COVID-19). We enrolled 4 patients hospitalized with critical COVID-19 and pulmonary carbapenem-resistant Acinetobacter baumannii (CRAB) infections to compassionate phage therapy (at 2 successive doses of 109 plaque-forming unit phages). All patients in our COVID-19-specific intensive care unit (ICU) with CRAB positive in bronchoalveolar lavage fluid or sputum samples were eligible for study inclusion if antibiotic treatment failed to eradicate their CRAB infections. While phage susceptibility testing revealed an identical profile of CRAB strains from these patients, treatment with a pre-optimized 2-phage cocktail was associated with reduced CRAB burdens. Our results suggest the potential of phages on rapid responses to secondary CRAB outbreak in COVID-19 patients.


Subject(s)
Acinetobacter Infections/etiology , Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Bacteriophages/physiology , COVID-19/complications , Coinfection/therapy , Phage Therapy , Podoviridae/physiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Aged , Aged, 80 and over , COVID-19/virology , Coinfection/microbiology , Female , Humans , Male , SARS-CoV-2/physiology
13.
Ital J Pediatr ; 46(1): 153, 2020 Oct 14.
Article in English | MEDLINE | ID: covidwho-874036

ABSTRACT

BACKGROUND: Pediatric COVID-19 is relatively mild and may vary from that in adults. This study was to investigate the epidemic, clinical, and imaging features of pediatric COVID-19 pneumonia for early diagnosis and treatment. METHODS: Forty-one children infected with COVID-19 were analyzed in the epidemic, clinical and imaging data. RESULTS: Among 30 children with mild COVID-19, seven had no symptoms, fifteen had low or mediate fever, and eight presented with cough, nasal congestion, diarrhea, headache, or fatigue. Among eleven children with moderate COVID-19, nine presented with low or mediate fever, accompanied with cough and runny nose, and two had no symptoms. Significantly (P < 0.05) more children had a greater rate of cough in moderate than in mild COVID-19. Thirty children with mild COVID-19 were negative in pulmonary CT imaging, whereas eleven children with moderate COVID-19 had pulmonary lesions, including ground glass opacity in ten (90.9%), patches of high density in six (54.5%), consolidation in three (27.3%), and enlarged bronchovascular bundles in seven (63.6%). The lesions were distributed along the bronchus in five patients (45.5%). The lymph nodes were enlarged in the pulmonary hilum in two patients (18.2%). The lesions were presented in the right upper lobe in two patients (18.1%), right middle lobe in one (9.1%), right lower lobe in six (54.5%), left upper lobe in five (45.5%), and left lower lobe in eight (72.7%). CONCLUSIONS: Children with COVID-19 have mild or moderate clinical and imaging presentations. A better understanding of the clinical and CT imaging helps ascertaining those with negative nucleic acid and reducing misdiagnosis rate for those with atypical and concealed symptoms.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnosis , Tomography, X-Ray Computed/methods , Adolescent , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Diagnostic Errors , Female , Humans , Infant , Male , Pneumonia, Viral/epidemiology , SARS-CoV-2
14.
Dermatol Ther ; 33(4): e13310, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-767240

ABSTRACT

Health professions preventing and controlling Coronavirus Disease 2019 are prone to skin and mucous membrane injury, which may cause acute and chronic dermatitis, secondary infection and aggravation of underlying skin diseases. This is a consensus of Chinese experts on protective measures and advice on hand-cleaning- and medical-glove-related hand protection, mask- and goggles-related face protection, UV-related protection, eye protection, nasal and oral mucosa protection, outer ear, and hair protection. It is necessary to strictly follow standards of wearing protective equipment and specification of sterilizing and cleaning. Insufficient and excessive protection will have adverse effects on the skin and mucous membrane barrier. At the same time, using moisturizing products is highly recommended to achieve better protection.


Subject(s)
Coronavirus Infections/therapy , Health Personnel , Mucous Membrane/pathology , Occupational Diseases/prevention & control , Pneumonia, Viral/therapy , Skin/pathology , COVID-19 , China , Consensus , Emollients/administration & dosage , Gloves, Protective , Hand Disinfection/methods , Humans , Masks , Pandemics , Personal Protective Equipment
SELECTION OF CITATIONS
SEARCH DETAIL